Publications

2019
Gill, U.S. et al., 2019. Fine needle aspirates comprehensively sample intrahepatic immunity. Gut, 68, pp.1493-1503.Abstract
OBJECTIVE: In order to refine new therapeutic strategies in the pipeline for HBV cure, evaluation of virological and immunological changes compartmentalised at the site of infection will be required. We therefore investigated if liver fine needle aspirates (FNAs) could comprehensively sample the local immune landscape in parallel with viable hepatocytes. DESIGN: Matched blood, liver biopsy and FNAs from 28 patients with HBV and 15 without viral infection were analysed using 16-colour multiparameter flow cytometry. RESULTS: The proportion of CD4 T, CD8 T, Mucosal Associated Invariant T cell (MAIT), Natural Killer (NK) and B cells identified by FNA correlated with that in liver biopsies from the same donors. Populations of Programmed Death-1 (PD-1)(hi)CD39(hi) tissue-resident memory CD8 T cells (CD69(+)CD103(+)) and liver-resident NK cells (CXCR6(+)T-bet(lo)Eomes(hi)), were identified by both FNA and liver biopsy, and not seen in the blood. Crucially, HBV-specific T cells could be identified by FNAs at similar frequencies to biopsies and enriched compared with blood. FNAs could simultaneously identify populations of myeloid cells and live hepatocytes expressing albumin, Scavenger Receptor class B type 1 (SR-B1), Programmed Death-Ligand 1 (PD-L1), whereas hepatocytes were poorly viable after the processing required for liver biopsies. CONCLUSION: We demonstrate for the first time that FNAs identify a range of intrahepatic immune cells including locally resident sentinel HBV-specific T cells and NK cells, together with PD-L1-expressing hepatocytes. In addition, we provide a scoring tool to estimate the extent to which an individual FNA has reliably sampled intrahepatic populations rather than contaminating blood. The broad profiling achieved by this less invasive, rapid technique makes it suitable for longitudinal monitoring of the liver to optimise new therapies for HBV.
Foote, J.R. et al., 2019. Variations in the Phagosomal Environment of Human Neutrophils and Mononuclear Phagocyte Subsets. Front Immunol, 10, p.188 *Joint Senior Author .Abstract
The phagosome microenvironment maintains enzyme activity and function. Here we compared the phagosomal pH of human neutrophils, monocytes, dendritic cells (DC), and monocyte-derived cells. An unexpected observation was the striking difference in phagosomal environment between the three monocytes subsets. Classical monocytes and neutrophils exhibited alkaline phagosomes, yet non-classical monocytes had more acidic phagosomes, while intermediate monocytes had a phenotype in-between. We next investigated the differences between primary naive DC vs. in vitro monocyte-derived DC (MoDC) and established that both these cells had acidic phagosomal environments. Across all phagocytes, alkalinization was dependent upon the activity of the NADPH oxidase activity, demonstrated by the absence of NADPH oxidase from a patient with chronic granulomatous disease (CGD) or the use of a pharmacological inhibitor, diphenylene iodonium (DPI). Interestingly, MoDC stimulated with bacterial lipopolysaccharide had increased phagosomal pH. Overall, the increase in alkalinity within the phagosome was associated with increased oxidase activity. These data highlight the heterogeneous nature and potential function of phagocytic vacuoles within the family of mononuclear phagocytes.
2018
Yona, S. & Mildner, A., 2018. Good things come in threes. Science Immunology , 3.Abstract
Ectopic expression of PU.1, IRF8, and BATF3 reprograms mouse and human fibroblasts into dendritic cells. See related Research Article by Rosa et al.
Stremmel, C. et al., 2018. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun, 9, p.75.Abstract
Tissue macrophages in many adult organs originate from yolk sac (YS) progenitors, which invade the developing embryo and persist by means of local self-renewal. However, the route and characteristics of YS macrophage trafficking during embryogenesis are incompletely understood. Here we show the early migration dynamics of YS-derived macrophage progenitors in vivo using fate mapping and intravital microscopy. From embryonic day 8.5 (E8.5) CX3CR1+ pre-macrophages are present in the mouse YS where they rapidly proliferate and gain access to the bloodstream to migrate towards the embryo. Trafficking of pre-macrophages and their progenitors from the YS to tissues peaks around E10.5, dramatically decreases towards E12.5 and is no longer evident from E14.5 onwards. Thus, YS progenitors use the vascular system during a restricted time window of embryogenesis to invade the growing fetus. These findings close an important gap in our understanding of the development of the innate immune system.
Maini, A. et al., 2018. Monocyte and Neutrophil Isolation, Migration, and Phagocytosis Assays. Curr Protoc Immunol, p.e53.Abstract
This article describes methods for isolating mouse monocytes and neutrophils, as well as in vitro protocols for measuring cell phagocytosis, migration, and polarization. The method employed here for the isolation of naive phagocytes overcomes many of the difficulties previously encountered concerning phagocyte activation. Three in vitro protocols are provided for the analysis of cell migration, one requiring no specialized equipment, one requiring a modified Boyden chamber, and the other employing a flow chamber, which measures cell adhesion, rolling, and migration. Three in vitro protocols to examine phagocytosis have been included in this updated version. Finally, a method is provided for imaging polarized cells by confocal microscopy. (c) 2018 by John Wiley & Sons, Inc.
Guilliams, M., Mildner, A. & Yona, S., 2018. Developmental and Functional Heterogeneity of Monocytes. Immunity, 49, pp.595-613.Abstract
Novel experimental approaches such as fate-mapping and single-cell analysis have brought fresh insight into monocyte development and function over the past decade and helped redefine the monocyte field. Monocytes are now known to consist of multiple subsets generated through distinct developmental pathways with diverse functional specializations. Their fates under homeostatic conditions include the accumulation in peripheral reservoirs and the engraftment into certain resident macrophage pools. Under pathological conditions, monocytes acquire inflammatory effector functions, but can also develop regulatory properties essential for tissue repair. Importantly, monocytes recruited during inflammation are often functionally distinct from resident macrophages or conventional dendritic cells. Here we outline emerging concepts in monocyte heterogeneity, emergency monopoiesis, and trained immunity and discuss how these bring new perspectives to monocyte research.
Haimon, Z. et al., 2018. Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies. Nat Immunol, 19, pp.636-644.Abstract
Transcriptome profiling is widely used to infer functional states of specific cell types, as well as their responses to stimuli, to define contributions to physiology and pathophysiology. Focusing on microglia, the brain's macrophages, we report here a side-by-side comparison of classical cell-sorting-based transcriptome sequencing and the 'RiboTag' method, which avoids cell retrieval from tissue context and yields translatome sequencing information. Conventional whole-cell microglial transcriptomes were found to be significantly tainted by artifacts introduced by tissue dissociation, cargo contamination and transcripts sequestered from ribosomes. Conversely, our data highlight the added value of RiboTag profiling for assessing the lineage accuracy of Cre recombinase expression in transgenic mice. Collectively, this study indicates method-based biases, reveals observer effects and establishes RiboTag-based translatome profiling as a valuable complement to standard sorting-based profiling strategies.
2017
Wolf, Y. et al., 2017. Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. J Exp Med, 214, pp.905-917.Abstract
Monocytes are circulating mononuclear phagocytes, poised to extravasate to sites of inflammation and differentiate into monocyte-derived macrophages and dendritic cells. Tumor necrosis factor (TNF) and its receptors are up-regulated during monopoiesis and expressed by circulating monocytes, as well as effector monocytes infiltrating certain sites of inflammation, such as the spinal cord, during experimental autoimmune encephalomyelitis (EAE). In this study, using competitive in vitro and in vivo assays, we show that monocytes deficient for TNF or TNF receptors are outcompeted by their wild-type counterpart. Moreover, monocyte-autonomous TNF is critical for the function of these cells, as TNF ablation in monocytes/macrophages, but not in microglia, delayed the onset of EAE in challenged animals and was associated with reduced acute spinal cord infiltration of Ly6C(hi) effector monocytes. Collectively, our data reveal a previously unappreciated critical cell-autonomous role of TNF on monocytes for their survival, maintenance, and function.
Varol, D. et al., 2017. Dicer Deficiency Differentially Impacts Microglia of the Developing and Adult Brain. Immunity, 46, pp.1030-1044 e8.Abstract
Microglia seed the embryonic neuro-epithelium, expand and actively sculpt neuronal circuits in the developing central nervous system, but eventually adopt relative quiescence and ramified morphology in the adult. Here, we probed the impact of post-transcriptional control by microRNAs (miRNAs) on microglial performance during development and adulthood by generating mice lacking microglial Dicer expression at these distinct stages. Conditional Dicer ablation in adult microglia revealed that miRNAs were required to limit microglial responses to challenge. After peripheral endotoxin exposure, Dicer-deficient microglia expressed more pro-inflammatory cytokines than wild-type microglia and thereby compromised hippocampal neuronal functions. In contrast, prenatal Dicer ablation resulted in spontaneous microglia activation and revealed a role for Dicer in DNA repair and preservation of genome integrity. Accordingly, Dicer deficiency rendered otherwise radio-resistant microglia sensitive to gamma irradiation. Collectively, the differential impact of the Dicer ablation on microglia of the developing and adult brain highlights the changes these cells undergo with time.
Patel, A.A. et al., 2017. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med, 214, pp.1913-1923.Abstract
In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying their generation, differentiation, and disappearance are critical to understanding both steady-state homeostasis and inflammatory responses. Here, using human in vivo deuterium labeling, we demonstrate that classical monocytes emerge first from marrow, after a postmitotic interval of 1.6 d, and circulate for a day. Subsequent labeling of intermediate and nonclassical monocytes is consistent with a model of sequential transition. Intermediate and nonclassical monocytes have longer circulating lifespans ( approximately 4 and approximately 7 d, respectively). In a human experimental endotoxemia model, a transient but profound monocytopenia was observed; restoration of circulating monocytes was achieved by the early release of classical monocytes from bone marrow. The sequence of repopulation recapitulated the order of maturation in healthy homeostasis. This developmental relationship between monocyte subsets was verified by fate mapping grafted human classical monocytes into humanized mice, which were able to differentiate sequentially into intermediate and nonclassical cells.
Mlcochova, P. et al., 2017. A G1-like state allows HIV-1 to bypass SAMHD1 restriction in macrophages. EMBO J, 36, pp.604-616.Abstract
An unresolved question is how HIV-1 achieves efficient replication in terminally differentiated macrophages despite the restriction factor SAMHD1. We reveal inducible changes in expression of cell cycle-associated proteins including MCM2 and cyclins A, E, D1/D3 in macrophages, without evidence for DNA synthesis or mitosis. These changes are induced by activation of the Raf/MEK/ERK kinase cascade, culminating in upregulation of CDK1 with subsequent SAMHD1 T592 phosphorylation and deactivation of its antiviral activity. HIV infection is limited to these G1-like phase macrophages at the single-cell level. Depletion of SAMHD1 in macrophages decouples the association between infection and expression of cell cycle-associated proteins, with terminally differentiated macrophages becoming highly susceptible to HIV-1. We observe both embryo-derived and monocyte-derived tissue-resident macrophages in a G1-like phase at frequencies approaching 20%, suggesting how macrophages sustain HIV-1 replication in vivo Finally, we reveal a SAMHD1-dependent antiretroviral activity of histone deacetylase inhibitors acting via p53 activation. These data provide a basis for host-directed therapeutic approaches aimed at limiting HIV-1 burden in macrophages that may contribute to curative interventions.
2016
Safaiyan, S. et al., 2016. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat Neurosci, 19, pp.995-8.Abstract
Myelin is synthesized as a multilamellar membrane, but the mechanisms of membrane turnover are unknown. We found that myelin pieces were gradually released from aging myelin sheaths and were subsequently cleared by microglia. Myelin fragmentation increased with age and led to the formation of insoluble, lipofuscin-like lysosomal inclusions in microglia. Thus, age-related myelin fragmentation is substantial, leading to lysosomal storage and contributing to microglial senescence and immune dysfunction in aging.
2015
Yona, S. & Gordon, S., 2015. From the Reticuloendothelial to Mononuclear Phagocyte System - The Unaccounted Years. Front Immunol, 6, p.328.Abstract
It is over 125 years since Ilya Metchnikoff described the significance of phagocytosis. In this review, we examine the early origins and development of macrophage research continuing after his death in 1916, through the period of the reticuloendothelial system. Studies on these cells resulted in a substantial literature spanning immunology, hematology, biochemistry, and pathology. Early histological studies on morphology and in situ labeling laid the foundations to appreciate the diversity and functional capacity of these cells in the steady state and during pathology. We complete this phagocyte retrospective with the establishment of the mononuclear phagocyte system nomenclature half a century ago.
Gilroy, D.W. & Yona, S., 2015. HIF1alpha allows monocytes to take a breather during sepsis. Immunity, 42, pp.397-9.Abstract
How the immune system is negatively affected by sepsis is not fully understood. In this issue of Immunity, Shalova et al. (2015) show that during human sepsis monocytes upregulate hypoxia-inducible factor-alpha (HIF1-alpha) activity and acquire an immunosuppressive phenotype while retaining anti-bacterial and wound-healing properties.
Bruttger, J. et al., 2015. Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central Nervous System. Immunity, 43, pp.92-106.Abstract
During early embryogenesis, microglia arise from yolk sac progenitors that populate the developing central nervous system (CNS), but how the tissue-resident macrophages are maintained throughout the organism's lifespan still remains unclear. Here, we describe a system that allows specific, conditional ablation of microglia in adult mice. We found that the microglial compartment was reconstituted within 1 week of depletion. Microglia repopulation relied on CNS-resident cells, independent from bone-marrow-derived precursors. During repopulation, microglia formed clusters of highly proliferative cells that migrated apart once steady state was achieved. Proliferating microglia expressed high amounts of the interleukin-1 receptor (IL-1R), and treatment with an IL-1R antagonist during the repopulation phase impaired microglia proliferation. Hence, microglia have the potential for efficient self-renewal without the contribution of peripheral myeloid cells, and IL-1R signaling participates in this restorative proliferation process.
Aychek, T. et al., 2015. IL-23-mediated mononuclear phagocyte crosstalk protects mice from Citrobacter rodentium-induced colon immunopathology 20150313th ed.,Abstract
Gut homeostasis and mucosal immune defense rely on the differential contributions of dendritic cells (DC) and macrophages. Here we show that colonic CX3CR1(+) mononuclear phagocytes are critical inducers of the innate response to Citrobacter rodentium infection. Specifically, the absence of IL-23 expression in macrophages or CD11b(+) DC results in the impairment of IL-22 production and in acute lethality. Highlighting immunopathology as a death cause, infected animals are rescued by the neutralization of IL-12 or IFNgamma. Moreover, mice are also protected when the CD103(+) CD11b(-) DC compartment is rendered deficient for IL-12 production. We show that IL-12 production by colonic CD103(+) CD11b(-) DC is repressed by IL-23. Collectively, in addition to its role in inducing IL-22 production, macrophage-derived or CD103(-) CD11b(+) DC-derived IL-23 is required to negatively control the otherwise deleterious production of IL-12 by CD103(+) CD11b(-) DC. Impairment of this critical mononuclear phagocyte crosstalk results in the generation of IFNgamma-producing former TH17 cells and fatal immunopathology.
2014
Zigmond, E. et al., 2014. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity, 40, pp.720-33.Abstract
Interleukin-10 (IL-10) is a pleiotropic anti-inflammatory cytokine produced and sensed by most hematopoietic cells. Genome-wide association studies and experimental animal models point at a central role of the IL-10 axis in inflammatory bowel diseases. Here we investigated the importance of intestinal macrophage production of IL-10 and their IL-10 exposure, as well as the existence of an IL-10-based autocrine regulatory loop in the gut. Specifically, we generated mice harboring IL-10 or IL-10 receptor (IL-10Ralpha) mutations in intestinal lamina propria-resident chemokine receptor CX3CR1-expressing macrophages. We found macrophage-derived IL-10 dispensable for gut homeostasis and maintenance of colonic T regulatory cells. In contrast, loss of IL-10 receptor expression impaired the critical conditioning of these monocyte-derived macrophages and resulted in spontaneous development of severe colitis. Collectively, our results highlight IL-10 as a critical homeostatic macrophage-conditioning agent in the colon and define intestinal CX3CR1(hi) macrophages as a decisive factor that determines gut health or inflammation.
Newson, J. et al., 2014. Resolution of acute inflammation bridges the gap between innate and adaptive immunity. Blood, 124, pp.1748-64.Abstract
Acute inflammation is traditionally characterized by polymorphonuclear leukocytes (PMN) influx followed by phagocytosing macrophage (Mphis) that clear injurious stimuli leading to resolution and tissue homeostasis. However, using the peritoneal cavity, we found that although innate immune-mediated responses to low-dose zymosan or bacteria resolve within days, these stimuli, but not hyperinflammatory stimuli, trigger a previously overlooked second wave of leukocyte influx into tissues that persists for weeks. These cells comprise distinct populations of tissue-resident Mphis (resMphis), Ly6c(hi) monocyte-derived Mphis (moMphis), monocyte-derived dendritic cells (moDCs), and myeloid-derived suppressor cells (MDSCs). Postresolution mononuclear phagocytes were observed alongside lymph node expansion and increased numbers of blood and peritoneal memory T and B lymphocytes. The resMphis and moMphis triggered FoxP3 expression within CD4 cells, whereas moDCs drive T-cell proliferation. The resMphis preferentially clear apoptotic PMNs and migrate to lymph nodes to bring about their contraction in an inducible nitric oxide synthase-dependent manner. Finally, moMphis remain in tissues for months postresolution, alongside altered numbers of T cells collectively dictating the magnitude of subsequent acute inflammatory reactions. These data challenge the prevailing idea that resolution leads back to homeostasis and asserts that resolution acts as a bridge between innate and adaptive immunity, as well as tissue reprogramming.
Guilliams, M. et al., 2014. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol, 14, pp.571-8.Abstract
The mononuclear phagocyte system (MPS) has historically been categorized into monocytes, dendritic cells and macrophages on the basis of functional and phenotypical characteristics. However, considering that these characteristics are often overlapping, the distinction between and classification of these cell types has been challenging. In this Opinion article, we propose a unified nomenclature for the MPS. We suggest that these cells can be classified primarily by their ontogeny and secondarily by their location, function and phenotype. We believe that this system permits a more robust classification during both steady-state and inflammatory conditions, with the benefit of spanning different tissues and across species.
2013
Yona, S. et al., 2013. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity, 38, pp.79-91.Abstract
Mononuclear phagocytes, including monocytes, macrophages, and dendritic cells, contribute to tissue integrity as well as to innate and adaptive immune defense. Emerging evidence for labor division indicates that manipulation of these cells could bear therapeutic potential. However, specific ontogenies of individual populations and the overall functional organization of this cellular network are not well defined. Here we report a fate-mapping study of the murine monocyte and macrophage compartment taking advantage of constitutive and conditional CX(3)CR1 promoter-driven Cre recombinase expression. We have demonstrated that major tissue-resident macrophage populations, including liver Kupffer cells and lung alveolar, splenic, and peritoneal macrophages, are established prior to birth and maintain themselves subsequently during adulthood independent of replenishment by blood monocytes. Furthermore, we have established that short-lived Ly6C(+) monocytes constitute obligatory steady-state precursors of blood-resident Ly6C(-) cells and that the abundance of Ly6C(+) blood monocytes dynamically controls the circulation lifespan of their progeny.